THE TRIANGULATED HOPF CATEGORY n+SL(2) VOLODYMYR LYUBASHENKO
نویسنده
چکیده
We discuss an example of a triangulated Hopf category related to SL(2). It is an equivariant derived category equipped with multiplication and comultiplication functors and structure isomorphisms. We prove some coherence equations for structure isomorphisms. In particular, the Hopf category is monoidal.
منابع مشابه
The Triangulated Hopf Category n+SL(2)
We discuss an example of a triangulated Hopf category related to SL(2). It is an equivariant derived category equipped with multiplication and comultiplication functors and structure isomorphisms. We prove some coherence equations for structure isomorphisms. In particular, the Hopf category is monoidal.
متن کاملThe Triangulated Hopf
We discuss an example of a triangulated Hopf category related to SL(2). It is an equivariant derived category equipped with multiplication and comultiplication functors and structure isomorphisms. We prove some coherence equations for structure isomorphisms. In particular, the Hopf category is monoidal.
متن کاملTRIANGULATED HOPF CATEGORY n+SL(2) VOLODYMYR LYUBASHENKO
Crane and Frenkel proposed a notion of a Hopf category [2]. It was motivated by Lusztig’s approach to quantum groups – his theory of canonical bases. In particular, Lusztig obtains braided deformations Uqn+ of universal enveloping algebras Un+ for some nilpotent Lie algebras n+ together with canonical bases of these braided Hopf algebras [4, 5, 6]. The elements of the canonical basis are identi...
متن کامل1 99 9 TRIANGULATED HOPF CATEGORY n + SL ( 2 )
Crane and Frenkel proposed a notion of a Hopf category [2]. It was motivated by Lusztig’s approach to quantum groups – his theory of canonical bases. In particular, Lusztig obtains braided deformations Uqn+ of universal enveloping algebras Un+ for some nilpotent Lie algebras n+ together with canonical bases of these braided Hopf algebras [4, 5, 6]. The elements of the canonical basis are identi...
متن کاملTriangulated Hopf
Crane and Frenkel proposed a notion of a Hopf category [2]. It was motivated by Lusztig’s approach to quantum groups – his theory of canonical bases. In particular, Lusztig obtains braided deformations Uqn+ of universal enveloping algebras Un+ for some nilpotent Lie algebras n+ together with canonical bases of these braided Hopf algebras [4, 5, 6]. The elements of the canonical basis are identi...
متن کامل